Abstract
Piping systems at gathering stations in the oil and gas industries often fail due to corrosion attacks from the brine water solution containing 8% NaCl that flows through the system. This solution is highly corrosive on the API 5L grade B steel pipes, thereby shortening its lifespan, with an increase in the frequency of pipe replacements. However, the corrosion resistance of API 5L grade B pipes can be improved by using chromate and molybdate inhibitors. Therefore, the objective of this research is to improve the corrosion resistance of the steel pipes using sodium chromate (Na2CrO4) and sodium molybdate (Na2MoO4) inhibitors with concentrations of 0.2, 0.4, 0.6, 0.8 and 1,0%. This research also aim to determine the optimum concentration of inhibitors to produce minimum corrosion rate, by testing the brine water solution containing 8% NaCl through the potentiodynamic polarization method. The results show that generally, the addition of sodium chromate and sodium molybdate inhibitors to the brine solution causes the steel pipes to be more resistant to corrosion. Furthermore, the sodium chromate inhibitor concentration of 0.6% produces the greatest corrosion potential of – 400 mV with the lowest rate of 0.38 mpy, while sodium molybdate concentration of 0.4% produces the highest corrosion potential of – 385 mV with the lowest rate of 0.34 mpy. The results of SEM observations at 0.4% sodium molybdate concentration showed that the corrosion inhibition/passivation effect of the inhibitor made the steel surface smoother, while the sodium chromate inhibitor at similar percentage failed to reach the optimal concentration to inhibit the corrosion process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.