Abstract
Given a nontrivial positive measure μ on the unit circle T, the associated Christoffel–Darboux kernels are Kn(z,w;μ)=∑k=0nφk(w;μ)¯φk(z;μ), n≥0, where φk(⋅;μ) are the orthonormal polynomials with respect to the measure μ. Let the positive measure ν on the unit circle be given by dν(z)=|G2m(z)|dμ(z), where G2m is a conjugate reciprocal polynomial of exact degree 2m. We establish a determinantal formula expressing {Kn(z,w;ν)}n≥0 directly in terms of {Kn(z,w;μ)}n≥0.Furthermore, we consider the special case of w=1; it is known that appropriately normalized polynomials Kn(z,1;μ) satisfy a recurrence relation whose coefficients are given in terms of two sets of real parameters {cn(μ)}n=1∞ and {gn(μ)}n=1∞, with 0<gn<1 for n≥1. The double sequence {(cn(μ),gn(μ))}n=1∞ characterizes the measure μ. A natural question about the relation between the parameters cn(μ), gn(μ), associated with μ, and the sequences cn(ν), gn(ν), corresponding to ν, is also addressed.Finally, examples are considered, such as the Geronimus weight (a measure supported on an arc of T), a measure for which the Christoffel–Darboux kernels, with w=1, are given by basic hypergeometric polynomials and a measure for which the orthogonal polynomials and the Christoffel–Darboux kernels, again with w=1, are given by hypergeometric polynomials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.