Abstract
The Chow ring of a matroid (or more generally, atomic latice) is an invariant whose importance was demonstrated by Adiprasito, Huh and Katz, who used it to resolve the long-standing Heron-Rota-Welsh conjecture. Here, we make a detailed study of the Chow rings of uniform matroids and of matroids of finite vector spaces. In particular, we express the Hilbert series of such matroids in terms of permutation statistics; in the full rank case, our formula yields the maj-exc $q$-Eulerian polynomials of Shareshian and Wachs. We also provide a formula for the Charney-Davis quantities of such matroids, which can be expressed in terms of either determinants or $q$-secant numbers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.