Abstract
Abstract We study the Chow ring of the moduli stack $\mathfrak {M}_{g,n}$ of prestable curves and define the notion of tautological classes on this stack. We extend formulas for intersection products and functoriality of tautological classes under natural morphisms from the case of the tautological ring of the moduli space $\overline {\mathcal {M}}_{g,n}$ of stable curves. This paper provides foundations for the paper [BS21]. In the appendix (jointly with J. Skowera), we develop the theory of a proper, but not necessary projective, pushforward of algebraic cycles. The proper pushforward is necessary for the construction of the tautological rings of $\mathfrak {M}_{g,n}$ and is important in its own right. We also develop operational Chow groups for algebraic stacks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.