Abstract
In this paper, we prove formulas that represent two-pointed Gromov–Witten invariant [Formula: see text] of projective hypersurfaces with [Formula: see text] in terms of Chow ring of [Formula: see text], the moduli spaces of stable maps from genus [Formula: see text] stable curves to projective space [Formula: see text]. Our formulas are based on representation of the intersection number [Formula: see text], which was introduced by Jinzenji, in terms of Chow ring of [Formula: see text], the moduli space of quasi maps from [Formula: see text] to [Formula: see text] with two marked points. In order to prove our formulas, we use the results on Chow ring of [Formula: see text], that were derived by Mustaţǎ and Mustaţǎ. We also present explicit toric data of [Formula: see text] and prove relations of Chow ring of [Formula: see text].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.