Abstract
The choroid is vascularized membranous tissue that supplies oxygen and nutrients to the photoreceptors and outer retina. Choroidal vessels underlying the retinal pigment epithelium are difficult to visualize by ophthalmoscopy and slit-lamp examinations. Optical coherence tomography (OCT) imaging made significant advancements in the last 2 decades; it allows visualization of the choroid and its vasculature. Enhanced-depth imaging techniques and swept-source OCT provide detailed choroidal images. A recent breakthrough, OCT angiography (OCTA), visualizes blood flow in the choriocapillaris. However, despite using OCTA, it is hard to visualize the choroidal vessel blood flow. In conventional structural OCT the choroidal vessel structure appears as a low-intensity objects. Image-processing techniques help obtain structural information about these vessels. Manual or automated segmentation of the choroid and binarization techniques enable evaluation of choroidal vessels. Viewing the three-dimensional choroidal vasculature is also possible using high-scan speed volumetric OCT. Unfortunately, although choroidal image analyses are possible using the images obtained by commercially available OCT, the built-in function that analyzes the choroidal vasculature may be insufficient to perform quantitative imaging analysis. Physicians must do that themselves. This review summarizes recent choroidal imaging processing techniques and explains the interpretation of the results for the benefit of imaging experts and ophthalmologists alike.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.