Abstract
System-N transport plays an important role in l-glutamine uptake into isolated rat choroid plexus but its role in the transport of another System-N substrate, l-histidine, has yet to be determined. Similarly, the possible effects on System-N mediated l-histidine transport of changes in pH and extracellular l-glutamine, such as occur in cerebral ischemia and hepatic encephalopathy, have yet to be examined. In the absence of competing amino acids, l-[ 3H]histidine uptake in isolated rat choroid plexus was mediated by both Na +-independent and Na +-dependent transport. The former was inhibited by 2-amino-2-norbornane carboxlic acid, indicating System-L transport, while the latter appears System-N mediated as it was inhibited by three System-N substrates but not substrates for System-A and -ASC. The Na +-dependent uptake had a K m of 0.2 mM and a V max of 1.4 nmol/mg/min. It accounted for 30% of l-histidine uptake in the presence of physiological concentrations of amino acids. Reductions in pH markedly inhibited Na +-dependent but not Na +-independent transport indicating that, as in liver but not neurons, System-N mediated transport at the choroid plexus is pH sensitive. Increases in l-glutamine concentration in the pathophysiological range reduced l-histidine uptake via both System-L and -N.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.