Abstract
This study assessed the transcription levels of estrogen-responsive genes, such as vitellogenins (Vtg1 and Vtg2), choriogenins (ChgL, ChgH, and ChgHm), cytochrome P450 aromatase (CYP19a1b), and ER subtypes (ERα, ERβ1, and ERβ2), in 7 days-post-fertilization (dpf) embryos and 9 and 12 dpf larvae of medaka (Oryzias latipes) exposed to estrogenic endocrine-disrupting chemicals (EDCs). The <5h-post-fertilization embryos were exposed to EDCs such as 17β-estradiol (E2), p-n-nonylphenol (NP), and bisphenol A (BPA). In E2 (0.10-222nM)-treated 7 dpf embryos and 9 or 12 dpf larvae, ChgL, ChgH, and ChgHm expression was up-regulated in a concentration-dependent manner. By contrast, interestingly, Vtg1 and Vtg2 expression was not induced in E2-treated 7 dpf embryos but was significantly induced in 9 and 12 dpf larvae, suggesting a developmental-stage-specific regulatory mechanism underlying Vtg expression. The maximum concentrations of NP (0.09-1.5μM) and BPA (1.8-30μM) up-regulated Chg expression in 9 or 12 dpf larvae, and the relative estrogenic potencies (REPs) of E2, NP, and BPA were 1, 2.1×10-4, and 1.0×10-5, respectively. Chg messenger RNA (mRNA) in medaka embryos and larvae can be used as a sensitive biomarker for screening potential estrogenic EDCs. Our assay system using embryos and larvae can be used as an in vivo alternative model because independent feeding stages (e.g., embryonic and early larval stages) are suitable alternatives.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.