Abstract
A chord of a circuit C of a matroid M on E is a cell e ϵ S\\ C such that C spans e. Menger's theorem gives necessary and sufficient conditions for a cell of a graphic matroid to be a chord of some circuit. We extend this result to a large class of matroids and find all minimal counterexamples. The theorem is used to obtain results on disjoint paths and to characterize a class of matroid sums.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.