Abstract

A variation of Choquet random sup-measures is introduced. These random sup-measures are shown to arise as the scaling limits of empirical random sup-measures of a general aggregated model. Because of the aggregations, the finite-dimensional distributions of introduced random sup-measures do not necessarily have classical extreme-value distributions. Examples include the recently introduced stable-regenerative random sup-measures as a special case.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.