Abstract

A countable discrete group $G$ is called Choquet-Deny if for every non-degenerate probability measure $\mu$ on $G$ it holds that all bounded $\mu$-harmonic functions are constant. We show that a finitely generated group $G$ is Choquet-Deny if and only if it is virtually nilpotent. For general countable discrete groups, we show that $G$ is Choquet-Deny if and only if none of its quotients has the infinite conjugacy class property. Moreover, when $G$ is not Choquet-Deny, then this is witnessed by a symmetric, finite entropy, non-degenerate measure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.