Abstract
AbstractWith the advent of field emission scanning electron microscopes (FESEM), the observation of small phases in the 5 to 50 nm range seems to be possible at low accelerating voltage using backscattered electron imaging mode. In this context, it is important to understand the contrast of multiphased materials at such low energy. A Monte Carlo program to simulate electron trajectories of multiphased materials (CASINO) was used to compute electron backscattering images. Simulations of images for various compositions of spherical precipitates embedded in a homogeneous matrix as a function of precipitate size and accelerating voltage are presented. These simulations show the concept of an optimum accelerating voltage to maximize the contrast of electron backscattering images. The results presented in this paper show that the contrast of backscattering images of multiphased images in the scanning electron microscope is not only a function of the atomic number difference, but that it is also strongly related to the geometry and the size of the phases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.