Abstract

One important component of model selection using generalized linear models (GLM) is the choice of a link function. We propose using approximate Bayes factors to assess the improvement in fit over a GLM with canonical link when a parametric link family is used. The approximate Bayes factors are calculated using the Laplace approximations given in [32], together with a reference set of prior distributions. This methodology can be used to differentiate between different parametric link families, as well as allowing one to jointly select the link family and the independent variables. This involves comparing nonnested models and so standard significance tests cannot be used. The approach also accounts explicitly for uncertainty about the link function. The methods are illustrated using parametric link families studied in [12] for two data sets involving binomial responses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.