Abstract

Low tidal volume (Vt) ventilation is protective against ventilator-induced lung injury but can promote development of atelectasis. Periodic deep inflation (DI) can open the lung, but if delivered too frequently may cause damage via repeated overdistention. We therefore examined the effects of varying DI frequency on lung mechanics, gas exchange, and biomarkers of injury in mice. C57BL/6 males were mechanically ventilated with positive end-expiratory pressure (PEEP) of 2 cmH2O for 2 h. One high Vt group received a DI with each breath (HV). Low Vt groups received 2 DIs after each hour of ventilation (LV) or 2 DIs every minute (LVDI). Control groups included a nonventilated surgical sham and a group receiving high Vt with zero PEEP (HVZP). Respiratory impedance was measured every 4 min, from which tissue elastance (H) and damping (G) were derived. G and H rose progressively during LV and HVZP, but returned to baseline after hourly DI during LV. During LVDI and HV, G and H remained low and gas exchange was superior to that of LV. Bronchoalveolar lavage fluid protein was elevated in HV and HVZP but was not different between LV and LVDI. Lung tissue IL-6 and IL-1beta levels were elevated in HVZP and lower in LVDI compared with LV. We conclude that frequent DI can safely improve gas exchange and lung mechanics and may confer protection from biotrauma. Differences between LVDI and HV suggest that an optimal frequency range of DI exists, within which the benefits of maintaining an open lung outweigh injury incurred from overdistention.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.