Abstract

In medical X-ray imaging, phase contrast imaging is to measure refraction angles caused by the patient. The X-ray dose for a given image quality depends on the sensitivity of the setup, i.e. on the angular measurement range. Measurement ranges of existing phase contrast setups are either too high or too low for perfectly imaging a human finger in air: There is a gap in available measurement ranges, which prevents a reduction of X-ray dose. To fill the gap, this work proposes a novel variant of a Talbot-Lau interferometer. Instead of a single phase grating, it uses two phase gratings, each consisting of tiny prisms. The height of the prisms is an additional factor in the measurement range, which allows to fill the gap. The potential is a dose-reduction by a factor of 5.4 compared to Talbot-Lau setups of same post-patient length. Simulation results indicate a polychromatic visibility of up to 20%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.