Abstract

The paper examines the problem of choosing a material and a method for increasing the wear resistance of elements of transport and handling equipment. The reliability of the parts in use has a special influence on the performance of transport and handling equipment. The choice of materials for their manufacture allows further calculation of the likelihood of how such elements will affect its ability to work and productivity. In the process of determining the material and method for increasing the wear resistance of transport and handling equipment, structural steels with different chemical compositions were selected: low-carbon 08ps (as a model material), 10, 20, 30, St3 and low-alloy steels 09G2S and 10HSND, as well as high-carbon steel 65G and boron steel 30MnB5. Such methods as high-temperature annealing, normalization, hardening and high-temperature tempering, thermal cycling, cold plastic deformation, thermal cycling of steels after cold plastic deformation were applied. In the course of the experiment, it was found that both for low-carbon steels 08ps, 10, 20, 30, St3, and for low-alloy structural steels 09G2S and 10HSND, as well as for high-carbon steel 65G and boron-containing steel 30MnB5, an increase in the number of TCT cycles (thermal cycling treatment) leads to an increase in the strength properties of the metal. With an increase in the number of cycles over 3–6, the increase in strength properties slows down significantly.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call