Abstract
This paper presents a comparative evaluation of different distance metrics and local planners within the context of probabilistic roadmap methods for planning the motion of rigid objects in three-dimensional workspaces. The study concentrates on cluttered three-dimensional workspaces typical of, for example, virtual prototyping applications such as maintainability studies in mechanical CAD designs. Our results include recommendations for selecting appropriate combinations of distance metrics and local planners for such applications. Our study of distance metrics shows that the importance of the translational distance increases relative to the rotational distance as the environment becomes more crowded. We find that each local planner makes some connections that none of the others does-indicating that better connected roadmaps will be constructed using multiple local planners. We propose a new local planning method we call rotate-at-s that often outperforms the common straight-line in C-space method in crowded environments.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.