Abstract
This paper suggests a multiplicative volatility model where volatility is decomposed into a stationary and a nonstationary persistent part. We provide a testing procedure to determine which type of volatility is prevalent in the data. The persistent part of volatility is associated with a nonstationary persistent process satisfying some smoothness and moment conditions. The stationary part is related to stationary conditional heteroskedasticity. We outline theory and conditions that allow the extraction of the persistent part from the data and enable standard conditional heteroskedasticity tests to detect stationary volatility after persistent volatility is taken into account. Monte Carlo results support the testing strategy in small samples. The empirical application of the theory supports the persistent volatility paradigm, suggesting that stationary conditional heteroskedasticity is considerably less pronounced than previously thought.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.