Abstract

The optimal control problem for a three-dimensional elastic body containing a thin rigid inclusion as a surface is studied. It is assumed that the inclusion delaminates, which is why there is a crack between the elastic domain and the inclusion. The boundary conditions on the crack faces that exclude mutual penetration of the points of the body and inclusion are considered. The cost functional that characterizes the deviation of the surface force vector from the function prescribed on the external boundary is used; in this case, the inclusion shape is considered as a control function. It is proven that a solution of the described problem exists.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.