Abstract

Dendritic cell (DC)-based cancer vaccination has shown great potential in cancer immunotherapy. As a result, novel nanoparticles aiming to load DCs with tumor antigens are being developed and evaluated in vitro. For this, murine bone marrow-derived DCs (BM-DCs) are most commonly used as model DCs. However, many different protocols exist to generate these cells. Therefore, we investigated to what extent different BM-DC culture protocols impact on the immunobiology of the cells, as well as their response to particulate antigens. We evaluated 4 different BM-DC protocols with 2 main variables: bovine serum and cytokine combinations. Our results show distinct differences in yield, phenotypical maturation status and the production of immune stimulatory and immune suppressive cytokines by the different BM-DCs. Importantly, we demonstrate that the antigen-loading of these different BM-DCs via transfection with mRNA lipoplexes results in large differences in transfection efficiency as well as in the capacity of mRNA-transfected BM-DCs to stimulate antigen-specific T cells. Thus, it is clear that the BM-DC model can have significant confounding effects on the evaluation of novel nanoparticulate vaccines. To take this into account when testing novel particulate antigen-delivery systems in BM-DC models, we propose to (1) perform a thorough immunological characterization of the BM-DCs and to (2) not only judge a particle's potential for cancer vaccination based on transfection efficiency, but also to include an evaluation of functional end-points such as T cell activation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.