Abstract

Bulk compositions were determined by broad-beam electron microprobe analysis for thirteen of the least aqueously altered chondrules in Murray (CM2). These and literature data reveal compositional differences between CM-CO and ordinary chondrite (OC) chondrules: 1. (a) CO chondrules are richer in refractory lithophiles and poorer in Cr, Mn and volatile lithophiles than OC chondrules; much lower refractory lithophile abundances in CM chondrules resulted from aqueous alteration, 2. (b) in CM-CO chondrites, abundances of refractory lithophiles are higher in nonporphyritic than porphyritic chondrules, whereas in H-L-LL3 chondrites the converse is true, 3. (c) Cr ranges are greater and Cr and Mn correlate more strongly in chondrules in CM-CO than in H-L-LL3 chondrites. We find evidence for two important lithophile precursor components of CM-CO chondrite chondrules: 1. (1) pyroxene- and refractory-rich, FeO-poor; 2. (2) olivine-rich, refractory and FeO-poor. The occurrence of a few FeO-rich chondrules attests to a third component similar to matrix: olivine- and FeO-rich, refractories not characterized. The first two components differ from those inferred for OC chondrules, consistent with formation at different locations. The pyroxene- and refractory-rich, FeO-poor lithophile precursor component probably formed by an incomplete evaporation of presolar silicates that brought these materials into the enstatite stability field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.