Abstract

Paracrine factors secreted in the conditioned media (CMs) of periodontal ligament-derived stem cells (PDLSCs) have been shown to downregulate inflammatory effects of interleukin (IL)-1β on chondrocytes wherein milk fat globule-epidermal growth factor 8 (MFG-E8) is one of the PDLSCs' highly secretory proteins. Therefore, the objective of this study was to investigate the ability of PDLSC CMs and MFG-E8 to reduce the inflammatory effects of impact injury on porcine talar articular cartilage (AC) and IL-1β on chondrocytes, respectively. Stem cells were isolated from human periodontal ligaments. The MFG-E8 content in CM collected at 5% and 20% oxygen was measured by ELISA assay and compared across subcultures and donors. AC samples were divided into three groups: control, impact, and impact+CM. Chondrocytes were isolated from pig knees and were divided into three groups: control, IL-1β, and IL-1β+MFG-E8. Gene expression data were analyzed by reverse transcription-polymerase chain reaction. It was found that impact load and IL-1β treatment upregulated IL-1β, TNF-α, ADAMTS-4, and ADAMTS-5 gene expression in AC and chondrocytes, respectively. PDLSCs-CM prevented the upregulation of all four genes due to impact, whereas MFG-E8 prevented upregulation of IL-1β, ADAMTS-4, and ADAMTS-5 in chondrocytes, but it did not prevent TNF-α upregulation. There were no significant differences in MFG-E8 content in CM among oxygen levels, passage numbers, or donors. The findings suggested that MFG-E8 is an effective anti-inflammatory agent contributing to the chondroprotective effects of PDLSCs-CM on acutely injured AC. Thus, introducing PDLSCs-CM to sites of acute traumatic AC injury could prevent the development of post-traumatic osteoarthritis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call