Abstract

Attributing cell instructive features and multifunctionality to biological inks (bioinks) employed for three-dimensional (3D) printing strategies is very much essential to bring about a paradigm shift in developing next generation smart intuitive 3D bioprinted constructs. Giving perspective to this notion, we explore here the feasibilities in developing multifunctional silk-based cartilage and bone bioinks for recreating heterogeneous complicated tissue constructs such as the osteochondral interface. In this regard, the developed silk based bioinks exhibit shear thinning behaviour with quick thixotropic recovery (~90% recovery) aiding in printing self-standing structures with decent print fidelity. The hydrogel network within the 3D bioprinted constructs present good permeability enabling in forming an undulating demarcation region at the bioprinted osteochondral interface. Furthermore, the cartilage and bone inks used for the microextrusion based bioprinting of osteochondral constructs facilitate the spatial maturation and differentiation of encapsulated stem cells towards osteogenic and chondrogenic lineages. The incorporation of strontium doped nano-apatites activates hypoxia inducible factor (HIF-1α) related genes, conferring proangiogenic and chondroprotective traits to the bioinks. Involvement of strontium in down regulating cyclooxygenase-2 via inhibiting prostaglandins (PGE2) pathway enabled anti-osteoclastic activity while favouring M2 macrophage biasness. Altogether, these findings corroborate the potential of the developed nanocomposite bioinks for fabricating clinically viable grafts for osteochondral defect repair associated with osteoporosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call