Abstract

To study the chondroprotective and anti-inflammatory potential of inducible nitric oxide synthase (iNOS) inhibitor S-methylisothiourea (SMT) in in-vitro model. Rabbit cartilage explants were stimulated with recombinant human interleukin 1β (rhIL-1β), and the chondroprotective and anti-inflammatory effects of SMT were investigated. Rat synovial explants were stimulated with LPS, and the anti-inflammatory effect of SMT on synovium was studied. To examine the role of SMT in synovial inflammation mediated cartilage damage, LPS stimulated synovial explants were cultured with dead cartilage with or without SMT for 72 h. The culture medium was analysed for sulfated glycosaminoglycans (GAGs) and hydroxyproline as measure of proteoglycans and collagen degradation, respectively. SMT significantly reduced GAGs, hydroxyproline, matrix metalloproteinase (MMP)-13, tumour necrosis factor alpha (TNF-α), prostaglindin E2 (PGE2 ) and nitrite release in stimulated rabbit cartilage media indicating chondroprotective and anti-inflammatory effects of SMT in osteoarthritis (OA). Stimulated synovial explants caused release of nitrite, PGE2 , IL-1β and TNF-α in the medium which were significantly reduced by SMT indicating its anti-inflammatory action. SMT significantly reduced GAGs and hydroxyproline in medium and shown protective effect against synovium-mediated cartilage damage. SMT inhibited cartilage degradation, synovial inflammation and synovium-mediated cartilage damage, suggesting that SMT may be an agent for pharmacological intervention in OA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.