Abstract
Glioma stem/initiating cells (GSC/GIC) and their niches are considered responsible for the therapeutic resistance and recurrence of malignant glioma. To clarify the molecular mechanisms of GIC maintenance/differentiation, we performed a unique integrated proteogenomics utilizing GIC clones established from patient tumors having the potential to develop glioblastoma. After the integration and extraction of the transcriptomics/proteomics data, we found that chondroitin sulfate proteoglycan 4 (CSPG4) and its glyco-biosynthetic enzymes were significantly upregulated in GICs. Glyco-qPCR array revealed that chondroitin sulfate (CS) biosynthetic enzymes, such as xylosyltransferase 1 (XYLT1) and CHST11, were significantly downregulated during serum-induced GIC differentiation. Simultaneously, the CS modification on CSPG4 was characteristically decreased during the differentiation, and also downregulated by XYLT1 knockdown. Notably, the CS-degradation on CSPG4 by ChondroitinaseABC treatment dramatically induced GIC differentiation, which was significantly inhibited by the addition of CS. GIC growth and differentiation ability were significantly suppressed by CSPG4 knockdown, suggesting that CS-CSPG4 is an important factor in GIC maintenance/differentiation. To understand the molecular function of CS-CSPG4, we analyzed its associating proteins in GICs and found that CSPG4, but not CS-CSPG4, interacts with integrin αV during GIC differentiation. This event sequentially upregulates integrin-ERK signaling, which can be inhibited by cyclic-RGD integrin αV inhibitor. These results indicate that CS-CSPG4 regulates the GIC microenvironment for GIC maintenance/differentiation via the CS moiety which controls integrin signaling. This study demonstrates a novel function of CS on CSPG4 as a niche factor, so-called “glyco-niche” for GICs, and suggests that CS-CSPG4 could be a potential target for malignant glioma.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.