Abstract
Chondrogenesis has been widely investigated in vitro using bone marrow-derived mesenchymal stromal cells (BM-MSCs) or primary chondrocytes. However, their use raises some issues partially circumvented by the availability of Adipose tissue-derived MSCs. Herein; we characterized the chondrogenic potential of human Multipotent Adipose-Derived Stem (hMADS) cells, and their potential use as pharmacological tool. hMADS cells are able to synthesize matrix proteins including COMP, Aggrecan and type II Collagen. Furthermore, hMADS cells express BMP receptors in a similar manner to BM-MSC, and BMP6 treatment of differentiated cells prevents expression of the hypertrophic marker type X Collagen. We tested whether IL-1β and nicotine could impact chondrocyte differentiation. As expected, IL-1β induced ADAMTS-4 gene expression and modulated negatively chondrogenesis while these effects were reverted in the presence of the IL-1 receptor antagonist. Nicotine, at concentrations similar to those observed in blood of smokers, exhibited a dose dependent increase of Aggrecan expression, suggesting an unexpected protective effect of the drug under these conditions. Therefore, hMADS cells represent a valuable tool for the analysis of in vitro chondrocyte differentiation and to screen for potentially interesting pharmacological drugs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.