Abstract
Cartilage damage is a common age-related problem that leads to progressive proteoglycan loss. Glucosamine stimulates proteoglycan synthesis and, therefore, its effect on the cartilage extracellular matrix synthesis over silk fibroin:chitosan (SF:CS) tissue-engineered scaffold was investigated for cartilage construct generation. Human mesenchymal stem cells (hMSCs) were cultured and differentiated over SF:CS-glucosamine porous scaffold, under dynamic culture condition in spinner flask bioreactor. hMSCs-seeded scaffold in dynamic culture exhibited homogenous cell distribution, proliferation and higher cell density at the core than static culture. Glucosamine in scaffold promoted proteoglycan and collagenous matrix synthesis as revealed by histological and immunofluorescence studies. Quantitative-PCR analysis showed upregulation of cartilage-specific genes, thereby confirming the chondrogenic differentiation. The chondrogenic differentiation of hMSCs was enhanced by the synergistic effect of glucosamine incorporated in SF:CS scaffold and influence of 3D dynamic culture environment, thereby resulting in chondrogenic phenotype of the cells that promoted cartilage regeneration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.