Abstract

Cell differentiation, adhesion, and orientation are known to influence the functionality of both natural and engineered tissues, such as articular cartilage. Several attempts have been devised to regulate these important cellular behaviors, including application of inexpensive but efficient electrospinning that can produce patterned extracellular matrix (ECM) features. Electrospun and oriented polycaprolactone (PCL) scaffolds (500 or 3000 nm fiber diameter) were created, and human mesenchymal stem cells (hMSCs) were cultured on these scaffolds. Cell viability, morphology, and orientation on the fibrous scaffolds were quantitatively determined as a function of time. While the fiber-guided initial cell orientation was maintained even after 5 weeks, cells cultured in the chondrogenic media proliferated and differentiated into the chondrogenic lineage, suggesting that cell orientation is controlled by the physical cues and minimally influenced by the soluble factors. Based on assessment by the chondrogenic markers, use of the nanofibrous scaffold (500 nm) appears to enhance the chondrogenic differentiation. These findings indicate that hMSCs seeded on a controllable PCL scaffold may lead to an alternate methodology to mimic the cell and ECM organization that is found, for example, in the superficial zone of articular cartilage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call