Abstract

Recently, tissues adjacent to the wound sites are regarded as a promising therapeutic cell source for curing and repairing purpose. Specifically, therapeutic stem cells have been identified in synovial tissue, a tissue adjacent to articular cartilage. The purpose of this study was to explore therapeutic chondrogenesis with rabbit synovium-derived mesenchymal stem cells (SMSCs) encapsulated in photopolymerized hydrogels. A non-degradable poly(ethylene glycol) diacrylate (PEGDA)-based hydrogel and biodegradable phosphoester–poly(ethylene glycol) (PhosPEG)-based hydrogel were both applied as 3-D scaffolds mediating SMSC chondrogenesis in vitro. The viability of SMSCs in both hydrogels was assessed by fluorescent Live/Dead assay and WST-1 assay. Levels of genes and proteins specific to SMSC chondrogenesis were evaluated by real-time RT-PCR, biochemical analysis and immunohistochemical analysis, respectively. The results demonstrated that SMSCs continue to have a high viability when encapsulated in the hydrogel. By treatment with transforming growth factor (TGF)-β1 or TGF-β3, positive SMSC chondrogenesis was successfully achieved in both gels, with the best outcome in the PEGDA system. It can be concluded that both PEGDA and PhosPEG hydrogels are appropriate cell-delivery vehicles for SMSC chondrogenesis. Especially as a biodegradable material, PhosPEG hydrogel displayed great potentials in future applications for articular cartilage regeneration coupling with SMSCs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call