Abstract

Type XI collagen and type II collagen are coexpressed in all cartilage, and both are essential for normal cartilage differentiation and skeletal morphogenesis. This laboratory has recently identified a 48-base pair (bp) enhancer element in the type II collagen gene Col2a1 that contains several HMG-type protein-binding sites and that can direct chondrocyte-specific expression in transient transfection and in transgenic mice. The present study has identified two short chondrocyte-specific enhancer elements within a region in the 5' portion of the type XI collagen gene Col11a2 that has previously been shown to influence chondrocyte-specific expression in transgenic mice. These Col11a2 enhancer elements, like the Col2a1 enhancer, contain several sites with homology to the high mobility group (HMG) protein-binding consensus sequence. In electrophoretic mobility shift assays, the Col11a2 elements formed a DNA-protein complex that was dependent on the presence of the HMG-like sites. It had the same mobility as the complex formed with the Col2a1 48-bp enhancer and appeared to contain the same or similar proteins, including SOX9. The Col11a2 elements directed gene expression in transient transfections of chondrocytes but not fibroblasts, and their activity was abolished by mutation of the HMG-like sites. Ectopically expressed SOX9 activated these enhancers in non-chondrocytic cells, as it also activates the Col2a1 enhancer. Finally, the Col11a2 enhancer elements both directed transgene expression to cartilage in developing mouse embryos. Overall, our results indicate that the two Col11a2 chondrocyte-specific enhancer elements share many similarities with the Col2a1 48-bp enhancer. These similarities suggest the existence of a genetic program designed to coordinately regulate the expression of these and perhaps other genes involved in the chondrocyte differentiation pathway.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.