Abstract

Cartilage resurfacing by chondrocyte implantation, with fibrin used as a vehicle, was examined in large (12 mm) full-thickness articular cartilage defects in horses. Articular chondrocytes, isolated from a 9-day-old foal, were mixed with fibrinogen and injected with thrombin, in a 1:1 mixture, into 12 mm circular defects on the lateral trochlea of the distal femur of eight normal horses. The contralateral femoropatellar (knee) joint served as a control in which the defect was left empty. Synovial fluid from the femoropatellar joints was sampled on days 0, 4, 7, 30, 120, and 240 postoperatively. Groups of four horses were killed at 4 or 8 months postoperatively, and the repair tissue was evaluated by gross and histologic examination with use of hematoxylin and eosin and safranin O staining and by autoradiography. Biochemical analyses included quantitation of proteoglycan, total collagen, and type-II collagen in the repair tissue. Grossly, grafted defects had improved filling of the cartilage lesions; histologically, these areas consisted of differentiated chondrocytes in the deep and middle zones. The cellular arrangement in these zones resembled that of hyaline cartilage. The control defects contained poorly attached fibrous tissue throughout. Grafted tissue at 8 months had increased proteoglycan synthesis evident by both safranin O staining and autoradiography. Glycosaminoglycan quantitation by dye-binding assay confirmed a significantly elevated glycosaminoglycan content in grafted defects (58.8 micrograms/mg of dry weight) compared with control defects (27.4 micrograms/mg; p < 0.05). Similarly, the levels of chondroitin sulfate/dermatan sulfate was significantly elevated in the grafted defects, and this was the predominant glycosaminoglycan epitope present. There was a statistically significant (p < 0.05) increase in type-II collagen in the grafted tissue at 8 months (61.2% grafted; 25.1% control). This resurfacing attempt with use of allograft chondrocytes, secured in large full-thickness articular defects with polymerized fibrin, resulted in an improved cartilage surface in comparison with the control defects, a significantly greater aggrecan level, and a significantly higher proportion of type-II collagen.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.