Abstract

A major problem with chondrocytes derived in vitro from stem cells is undesired hypertrophic degeneration, to which articular chondrocytes (ACs) are resistant. As progenitors of all adult tissues, induced pluripotent stem cells (iPSCs) are in theory able to form stable articular cartilage. In vitro differentiation of iPSCs into chondrocytes with an AC-phenotype and resistance to hypertrophy has not been demonstrated so far. Here, we present a novel protocol that succeeded in deriving chondrocytes from human iPSCs without using pro-hypertrophic bone-morphogenetic-proteins. IPSC-chondrocytes had a high cartilage formation capacity and deposited two-fold more proteoglycans per cell than adult ACs. Importantly, cartilage engineered from iPSC-chondrocytes had similar marginal expression of hypertrophic markers (COL10A1, PTH1R, IBSP, ALPL mRNAs) like cartilage from ACs. Collagen X was barely detectable in iPSC-cartilage and 30-fold lower than in hypertrophic cartilage derived from mesenchymal stromal cells (MSCs). Moreover, alkaline phosphatase (ALP) activity remained at basal AC-like levels throughout iPSC chondrogenesis, in contrast to a well-known significant upregulation in hypertrophic MSCs. In line, iPSC-cartilage subjected to mineralizing conditions in vitro showed barely any mineralization, while MSC-derived hypertrophic cartilage mineralized strongly. Low expression of Indian hedgehog (IHH) like in ACs but rising BMP7 expression like in MSCs suggested that phenotype stability was linked to the hedgehog rather than the bone morphogenetic protein (BMP) pathway. Taken together, unlimited amounts of AC-like chondrocytes with a high proteoglycan production reminiscent of juvenile chondrocytes and resistance to hypertrophy and mineralization can now be produced from human iPSCs in vitro. This opens new strategies for cartilage regeneration, disease modeling and pharmacological studies.

Highlights

  • Articular cartilage has a low regenerative capacity

  • The number of independent induced pluripotent stem cells (iPSCs)-derived cell lines as well as the number of independent donor populations of mesenchymal stromal cells (MSCs) and articular chondrocytes (ACs) used for each test is given in the figure captions

  • We demonstrated that during MSC-hypertrophy Indian hedgehog (IHH) upregulation is partly driven by WNT-activity (Diederichs et al, 2019)

Read more

Summary

Introduction

Articular cartilage has a low regenerative capacity. Focal defects frequently fail to repair and pose a severe risk to develop osteoarthritis (Buckwalter and Mankin, 1997). Cell and tissue engineering therapies were developed and optimized to meet this clinical need. These therapies depend on autologous articular chondrocytes (ACs), which are, highly invasive to harvest. Instead of forming articular cartilage, MSC-chondrocytes mimic growth plate chondrocytes undergoing endochondral ossification, become hypertrophic and develop a mineralization activity. When ACs are induced to cartilage formation in vitro under the same conditions (re-differentiation culture), they form phenotypically stable cartilage that maintains low expression of hypertrophic markers and does not form ectopic bone in vivo. The undesired hypertrophic degeneration of MSC-chondrocytes can currently not be prevented, and reproducible articular cartilage neogenesis from MSCs in vitro still remains elusive

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call