Abstract
Among the most frequent targets for toxic effects of modern pesticides, namely organophosphates and carbamates, one may find cholinesterases (ChEs). ChEs exist in a wide variety of animals and have been used actively to discriminate among the environmental effects of different pollutant groups, including the aforementioned pesticides. This study had three purposes, namely (i) identifying the ChE forms present in tissues (eyes and walking legs muscle) of two crab species, Carcinus maenas and Pachygrapsus marmoratus; to (ii) determine the in vitro toxicological effects, and (iii) compare the sensitivity of such enzymatic forms towards commonly used anti-ChE pesticides, namely the organophosphate chlorpyrifos and the carbamate carbofuran. Our results showed that there was not a clear preference for any of the tested substrates in any of the tissues from both species. Furthermore, the ChE activity was almost completely suppressed following incubation with eserine and with the specific inhibitor BW284C51 in all tissues from both species. In vitro exposure to chlorpyrifos promoted a significant decrease in ChE activity in both species. Furthermore, the ChE activity was completely suppressed following incubation with carbofuran and chlorpyrifos. These results suggest that the major ChE forms present in tissues of both crab species show intermediate structural properties and activity patterns, halfway between classic acetylcholinesterase and pseudocholinesterases. However, the sensitivity of the found forms towards ChE inhibitors was established, and the responsiveness of such forms towards common anti-ChE chemicals was established. Both tested species seem to be promising test organisms to be used in marine and coastal scenarios of putative contaminations by anti-ChE chemicals, considering the here reported patterns of response.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Environmental science and pollution research international
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.