Abstract

Vagus nerve activation may have important therapeutic significance for myocardial ischemia-reperfusion (IR) injury. Nitric oxide (NO) plays a vital role in the cardioprotective effects of anesthetic preconditioning (APC). Moreover, acetylcholine (ACh) prevents cardiomyocyte damage by activating AMP-activated protein kinase (AMPK) and increasing the phosphorylation of Ca2+/calmodulin-dependent protein kinase β (CaMKKβ). The aim of the present study was to determine whether APC could protect heart function by antagonizing IR damage via the cholinergic system. It was hypothesized that the NO synthase (NOS)/CaMKKβ/AMPK pathway might be involved in the cardioprotective effects induced by cholinergic receptor activation. Isolated rat hearts were subjected to ischemia for 30 min followed by 120 min of reperfusion. Volatile anesthetic sevoflurane (3.5%) was administered for 15 min before ischemia, then rinsed for 15 min. The muscarinic acetylcholine receptor (mAChR) antagonist atropine (ATR; 100 nM) and the nicotinic acetylcholine receptor (nAChR) antagonist hexamethonium (HEM; 50 µM) were administered 10 min before APC. Both mAChR and nAChR were involved in APC-induced cardioprotection. ATR and HEM treatment both abolished the protective effects of APC on IR damage in isolated hearts, demonstrating the importance of cholinergic receptors in the protection mechanism of APC. The present study thus suggests that APC plays a cardioprotective role, in part, by regulating neurohumoral pathways. In addition, there may be functional coupling between the two cholinergic receptors, and the NOS and CaMKKβ/AMPK pathways may play roles in shared pathways that mediate the cardioprotective effects of APC. These findings may provide insight into potential new mechanisms of APC-induced cardioprotection against IR injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.