Abstract

It was found during experiments on isolated frog spinal cord involving extracellular recording from the dorsal roots (sucrose bridging) and intracellular recording from motoneurons by microelectrodes that 10 mM of the M-cholinomimetic arecoline produces motoneuronal depolarization which is matched by depolarizing electronic ventral root potentials and a rise in motoneuronal input resistance. Arecoline changes synaptic transmission by increasing the amplitude of postsynaptic potentials during intracellular recording and that of motoneuronal reflex discharges in the ventral roots but reduces the duration of dorsal root potentials. In the presence of arecoline, L-glutamate-induced motoneuronal response increases. Facilitation of synaptic transmission produced by arecoline in the spinal cord is bound up with cholinergic M2- activation, since it is suppressed by atropine but not by low concentrations of pirenzipine; it is also coupled with a reduction in adenylcyclase activity. When motoneuronal postsynaptic response has been suppressed, as in the case of surplus calcium or theophylline, arecoline produces an inhibitory effect on the amplitude of motoneuronal monosynaptic reflex discharges which is suppressed by pirenzipine at a concentration of 1×10−7 M. This would indicate the presence at the primary afferent terminals of presynaptic cholinergic M1 receptors which mediate its inhibition of impulses of transmitter release. This effect is independent of changes in cyclic nucleotide concentration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.