Abstract

Synaptic potentials and the electrophysiological properties of 201 cells in the 4th lumbar paravertebral ganglia of the rabbit were studied in vitro using intracellular electrophysiological recording techniques. Cells had a mean transmembrane potential of 55.1 ± 0.8 mV, a mean input resistance of 37.0 ± 6.6 M Ω (range 29.9–61.1) and a mean membrane time constant of 6.0 ± 0.6 ms. Synaptic potentials in ganglionic neurones were evoked by electrical stimulation of the rami communicantes, inferior lumbar splanchnic nerves and the paravertebral chain from segments both above and below the L 4 ganglion. Synaptic responses consisted of a fast, hexamethonium-sensitive component and, following short periods of higher frequency stimulation, a slow, long lasting, pirenzepine and atropine-sensitive depolarization (slow-EPSP). No phenomenon corresponding to a late slow-EPSP was observed and, under our recording conditions no cells exhibited non-cholinergic slow excitatory or slow inhibitory postsynaptic potentials. It is concluded that fast excitatory synaptic events were mediated by nicotinic receptors whereas slow excitatory synaptic events were mediated by muscarinic m l receptors. McNeil-A-343, a muscarinic agonist, produced membrane depolarization, a decrease in membrane input conductance and in some cells a repetitive discharge of action potentials. In 60% of cells tested substance P produced a depolarization of the membrane potential with an associated decrease in membrane input conductance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call