Abstract

Studies using selective lesions of basal forebrain cholinergic neurons suggest that these neurons play a role in attentional processing, but not learning and memory. However, the tests of learning and memory used thus far have been restricted largely to spatial tasks. In the present study, we examined whether the cholinergic basal forebrain plays a role in a form of nonspatial associative memory, the social transmission of food preferences. Sham-operated control rats were compared to rats with 192 IgG-saporin lesions of the medial septum/diagonal band cholinergic projections to hippocampus or nucleus basalis magnocellularis/substantia innominata cholinergic projections to neocortex. Both lesions impaired 24-h retention of a learned social food preference relative to controls, despite performance on an immediate retention trial that was indistinguishable from controls. Moreover, 24-h retention of the socially learned food preference correlated strongly with cholinergic enzymatic activity in the neocortex, but not in the hippocampus. Immunohistochemical data confirmed significant and selective lesion-induced cholinergic depletions in the intended brain regions. These data provide evidence that the cholinergic basal forebrain, particularly the cholinergic projection to neocortex, is involved in the formation and/or retrieval of social memories related to food preference, and suggest a role for cortical acetylcholine in consolidation of associative memory processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.