Abstract

BackgroundNeurotrophins and their receptors regulate several aspects of the developing and mature nervous system, including neuronal morphology and survival. Neurotrophin receptors are active in signaling endosomes, which are organelles that propagate neurotrophin signaling along neuronal processes. Defects in the Npc1 gene are associated with the accumulation of cholesterol and lipids in late endosomes and lysosomes, leading to neurodegeneration and Niemann-Pick type C (NPC) disease. The aim of this work was to assess whether the endosomal and lysosomal alterations observed in NPC disease disrupt neurotrophin signaling. As models, we used i) NPC1-deficient mice to evaluate the central cholinergic septo-hippocampal pathway and its response to nerve growth factor (NGF) after axotomy and ii) PC12 cells treated with U18666A, a pharmacological cellular model of NPC, stimulated with NGF.ResultsNPC1-deficient cholinergic cells respond to NGF after axotomy and exhibit increased levels of choline acetyl transferase (ChAT), whose gene is under the control of NGF signaling, compared to wild type cholinergic neurons. This finding was correlated with increased ChAT and phosphorylated Akt in basal forebrain homogenates. In addition, we found that cholinergic neurons from NPC1-deficient mice had disrupted neuronal morphology, suggesting early signs of neurodegeneration. Consistently, PC12 cells treated with U18666A presented a clear NPC cellular phenotype with a prominent endocytic dysfunction that includes an increased size of TrkA-containing endosomes and reduced recycling of the receptor. This result correlates with increased sensitivity to NGF, and, in particular, with up-regulation of the Akt and PLC-γ signaling pathways, increased neurite extension, increased phosphorylation of tau protein and cell death when PC12 cells are differentiated and treated with U18666A.ConclusionsOur results suggest that the NPC cellular phenotype causes neuronal dysfunction through the abnormal up-regulation of survival pathways, which causes the perturbation of signaling cascades and anomalous phosphorylation of the cytoskeleton.

Highlights

  • Neurotrophins and their receptors regulate several aspects of the developing and mature nervous system, including neuronal morphology and survival

  • We used two different models to assess whether the NPC1 deficiency and endosomal abnormalities caused by cholesterol accumulation in the late endocytic pathway disrupted NGF signaling

  • We studied NGF signaling in vivo using the septo-hippocampal pathway, which responds to NGF after axotomy, by stabilizing the levels of choline acetyl transferase (ChAT) in axotomized cholinergic neurons

Read more

Summary

Introduction

Neurotrophins and their receptors regulate several aspects of the developing and mature nervous system, including neuronal morphology and survival. Defects in the Npc gene are associated with the accumulation of cholesterol and lipids in late endosomes and lysosomes, leading to neurodegeneration and Niemann-Pick type C (NPC) disease. Neurotrophins (NGF, BDNF, NT3 and NT4) regulate different aspects of the developing and mature nervous system, including neuronal survival and neuronal morphology. These small proteins exert these effects by Several neurodegenerative diseases are produced by alterations in molecules related to endocytosis and vesicular trafficking, which are cellular processes that regulate neurotrophin signaling [4,5]. Most mammalian cells are affected by intracellular cholesterol overload, neurodegeneration is the main cause of fatality in patients with NPC disease [8,10]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call