Abstract

Choline kinase α (CHKα) plays a crucial role in the regulation of membrane phospholipid synthesis and has oncogenic properties in vitro. We have analyzed the expression of CHKα in cell lines derived from pancreatic ductal adenocarcinoma (PDAC) and have found increased CHKα expression, associated with differentiation. CHKα protein expression was directly correlated with sensitivity to MN58b, a CHKα inhibitor that reduced cell growth through the induction of apoptosis. Accordingly, CHKα knockdown led to reduced drug sensitivity. In addition, we found that gemcitabine-resistant PDAC cells displayed enhanced sensitivity to CHKα inhibition and, in vitro, MN58b had additive or synergistic effects with gemcitabine, 5-fluorouracil, and oxaliplatin, three active drugs in the treatment of PDAC. Using tissue microarrays, CHKα was found to be overexpressed in 90% of pancreatic tumors. While cytoplasmic CHKα did not relate to survival, nuclear CHKα distribution was observed in 43% of samples and was associated with longer survival, especially among patients with well/moderately differentiated tumors. To identify the mechanisms involved in resistance to CHKα inhibitors, we cultured IMIM-PC-2 cells with increasingly higher concentrations of MN58b and isolated a subline with a 30-fold higher IC50. RNA-Seq analysis identified upregulation of ABCB1 and ABCB4 multidrug resistance transporters, and functional studies confirmed that their upregulation is the main mechanism involved in resistance. Overall, our findings support the notion that CHKα inhibition merits further attention as a therapeutic option in patients with PDAC and that expression levels may predict response.

Highlights

  • Pancreatic adenocarcinoma (PDAC) is the fourth cause of cancer-related death in the Western world, with a 5-year survival of

  • PDAC cells overexpress Choline kinase a (CHKa) To obtain an overall view of the expression of CHKa in PDAC, we applied a similar analysis as in GSEA–gene set enrichment against a preranked gene list, but we replaced genes by cell lines (TEA)

  • Cell lines derived from PDAC are significantly enriched among those displaying high level of expression of CHKa (Fig. 1 and Supplementary Fig. S2)

Read more

Summary

Introduction

Pancreatic adenocarcinoma (PDAC) is the fourth cause of cancer-related death in the Western world, with a 5-year survival of

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call