Abstract
The choline-deficient rat liver has been chosen as a physiologically relevant model system in which to study the regulation of phosphatidylcholine biosynthesis. When 50-g rats were placed on a choline-deficient diet for 3 days, the activity of CTP:phosphocholine cytidylyltransferase (CT) was increased 2-fold in the microsomes and decreased proportionately in the cytosol. A low titer antibody to CT was obtained from chickens and used to identify the amount of CT protein in cytosol from rat liver. The amount of CT recovered from the choline-deficient cytosol was significantly less than in cytosol from choline-supplemented rats. When hepatocytes were prepared from choline-deficient livers, supplementation of the medium of the cells with choline caused CT to move from the membranes to cytosol within 1-2 h. The activity of another translocatable enzyme of glycerolipid metabolism, phosphatidate phosphohydrolase, was unchanged in cytosol from choline-deficient rat livers, and the microsomal activity of this enzyme was only minimally increased. When the livers were fractionated into endoplasmic reticulum and Golgi, there was a 2-fold increase in the activity on the endoplasmic reticulum from choline-deficient livers but no change in activity associated with Golgi. Thus, the increased association of CT with endoplasmic reticulum in choline-deficient livers appears to be specific to that subcellular fraction, and the subcellular location of other enzymes may not be affected.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.