Abstract
Cerebral cortical microvessels are innervated by cholinergic fibers that are probably involved in the regulation of local cerebral blood flow and blood-brain barrier permeability. The possibility exists that the cholinergic terminals associated with the cortical microvasculature belong to neurons from the nucleus basalis magnocellularis (NBM), where 70% of the cortical cholinergic projections originate. To test this hypothesis, ibotenic acid (25 nmol) was injected unilaterally in the NBM in rats, and 14 days later, choline acetyltransferase (ChAT) activity was measured in the frontoparietal cortex and in a blood vessel fraction isolated from this region. Lesions of the NBM resulted in a 50% decrease of cortical ChAT as compared with control or sham-operated hemispheres; however, no changes were observed in the ChAT activity associated with cortical microvessels. These results indicate that, in rat cerebral cortex, the perivascular cholinergic terminals do not originate in the basal forebrain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.