Abstract

Steroidogenic acute regulatory (StAR) protein plays a crucial role in the intramitochondrial movement of cholesterol, where P450 side chain cleavage enzyme resides. Cholesterol sulphate (CS), which is present ubiquitously in mammalian tissues, is not only a precursor of sulphated adrenal steroids but also an inhibitor of cholesterol biosynthesis. This study was designed to examine the biological roles of CS in steroidogenesis in adrenocortical cells. Human adrenocortical carcinoma H295R cells were cultured with various amounts of CS. To evaluate steroid hormone synthesis, pregnenolone production in cells was assayed. The amount of pregnenolone produced by H295R cells in culture medium, to which over 50 mug/ml CS was added, was significantly (P<0.05) decreased compared with that produced by control cells. Western blot analysis was performed to determine StAR protein level using whole cell extracts from cells. StAR protein level decreased when the concentration of CS in the medium was 50 mug/ml, whereas the level of glyceraldehyde-3-phosphate dehydrogenase did not change. To examine the mechanism by which StAR gene expression is controlled, we performed RT-PCR and measured promoter activity in cells transfected with pGL(2) StAR reporter constructs. StAR mRNA level and promoter activity were decreased in cells. The decrease in StAR protein level is a result of the low StAR gene expression level. In conclusion, CS affects the production of steroid hormones by reducing StAR protein level in adrenocortical cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call