Abstract

Mammalian cells acquire cholesterol from low-density lipoprotein (LDL) and from endogenous biosynthesis. The roles of the Niemann-Pick type C1 protein in mediating the endosomal transport of LDL-derived cholesterol and endogenously synthesized cholesterol are discussed. Excess cellular cholesterol is converted to cholesteryl esters by the enzyme acyl-coenzyme A:cholesterol acyltransferase (ACAT) 1 or is removed from a cell by cellular cholesterol efflux at the plasma membrane. A close relationship between the ACAT substrate pool and the cholesterol efflux pool is proposed. Sterol-sensing domains (SSDs) are present in several membrane proteins, including NPC1, HMG-CoA reductase, and the SREBP cleavage-activating protein. The functions of SSDs are described. ACAT1 is an endoplasmic reticulum cholesterol sensor and contains a signature motif characteristic of the membrane-bound acyltransferase family. The nonvesicular cholesterol translocation processes involve the START domain proteins and the oxysterol binding protein-related proteins (ORPs). The properties of these proteins are summarized.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.