Abstract

BackgroundLymphotoxin β receptor (LTβR) plays important roles in the development of the immune system and immune response. At the cellular level, ligand-bound LTβR activates the pro-inflammatory NF-κB pathway but the detailed mechanisms regulating its signaling remain unknown. Understanding them is of high importance since LTβR and its ligands are promising therapeutic targets. Here, we studied the consequences of perturbed cellular cholesterol content on LTβR-induced NF-κB signaling.MethodsTo modulate cholesterol availability and/or level in lung carcinoma A549 and H2228, and endothelial HUVEC cells different treatment regimens with filipin, methyl-β-cyclodextrin and simvastatin were applied. LTβR localization was studied by confocal microscopy. The activity of LTβR-induced NF-κB pathway was assessed by measuring the levels of NF-κB pathway inhibitor IκBα and phosphorylation of RelA transcription factor by Western blotting. The NF-κB transcriptional response, production of chemokines and adhesion molecules were examined by qRT-PCR, ELISA, and Western blotting, respectively. Adherence of different types of primary immune cells to epithelial A549 cells and endothelial HUVECs was measured fluorometrically. Interactions of LTβR with its protein partners were investigated by immunoprecipitation.ResultsWe showed that filipin-mediated sequestration of cholesterol or its depletion from the plasma membrane with methyl-β-cyclodextrin impaired LTβR internalization and potentiated LTβR-dependent activation of the canonical branch of the NF-κB pathway. The latter was manifested by enhanced degradation of IκBα inhibitor, elevated RelA phosphorylation, substantial increase in the expression of NF-κB target genes encoding, among others, cytokines and adhesion molecules known to play important roles in immune response. It was followed by robust secretion of CXCL8 and upregulation of ICAM1, that favored the adhesion of immune cells (NK and T cells, neutrophils) to A549 cells and HUVECs. Mechanistically, we showed that cholesterol depletion stabilized interactions of ligand-stimulated LTβR with modified forms of TRAF2 and NEMO proteins.ConclusionsOur results showed that the reduction of the plasma membrane content of cholesterol or its sequestration strongly potentiated signaling outcome initiated by LTβR. Thus, drugs modulating cholesterol levels could potentially improve efficacy of LTβR-based therapies.7g6DBbTy37JCdJS78E3YgKVideo abstract.

Highlights

  • Lymphotoxin β receptor (LTβR) plays important roles in the development of the immune system and immune response

  • Receptors belonging to the tumor necrosis factor receptor superfamily (TNFRSF) and their ligands have been exploited as promising therapeutic targets in the treatment of cancer and autoimmune diseases [1,2,3]

  • The significance of mean comparison is annotated as Sequestration of cholesterol augments LTβR-dependent Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling and impairs LTβR internalization Previous studies revealed that human lung carcinoma A549 cells are suitable to study LTβR signaling in vitro [44, 53]

Read more

Summary

Introduction

Lymphotoxin β receptor (LTβR) plays important roles in the development of the immune system and immune response. Lymphotoxin β receptor (LTβR) is a member of TNFRSF that binds lymphotoxin α1β2 and LIGHT (homologous to lymphotoxin, exhibits inducible expression and competes with HSV glycoprotein D for binding to herpesvirus entry mediator, a receptor expressed on T lymphocytes) [4, 5]. This receptor regulates a number of important processes including development of secondary lymphoid organs, such as Peyer’s patches [6] and lymph nodes [7], development of natural killer (NK) cells [8, 9], compartmentalization of dendritic cells [10] and T cell afferent lymphatic migration [11]. Stimulation of LTβRdependent pathways with LIGHT or agonistic antibody against LTβR promoted T cells infiltration into tumor, restricting its growth [16, 17]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call