Abstract

The medicinal use of garlic dates back thousands of years, but there was little scientific support of its therapeutic and pharmacologic properties until recently. In the past decade, the cancer-protective effects of garlic have been well established by epidemiologic studies and animal experiments. However, the cardiovascular-protective properties of garlic are less well understood. In particular, despite the reported hypocholesterolemic effect of garlic, the mechanism of the effect is unclear. In a recent randomized, double-blind, placebo-controlled intervention study, we showed that aged garlic extract (AGE) supplementation was effective in lowering plasma concentration of total cholesterol by 7% and LDL cholesterol by 10% in hypercholesterolemic men compared with subjects consuming a placebo. Supplementation of AGE in animal diets similarly reduced plasma concentrations of total cholesterol and triacylglycerol by 15 and 30%, respectively. In subsequent experiments using cultured rat hepatocytes, we found 44--87% inhibition of cholesterol synthesis by the water-extractable fraction (WEF), methanol-extractable fraction (MEF) and petroleum ether-extractable fraction (PEF) of fresh garlic, and Kyolic (liquid form of AGE). These observations suggested that hydrophilic and hydrophobic compounds of garlic are inhibitory to cholesterol synthesis. Because S-allylcysteine (SAC) alone was less potent than Kyolic, which contains SAC and other sulfur compounds, a maximal inhibition appears to require a concerted action of multiple compounds of garlic. In a series of experiments, we further characterized the inhibitory potency of individual water-soluble and lipid-soluble compounds of garlic. Among water-soluble compounds, SAC, S-ethylcysteine (SEC), and S-propylcysteine (SPC) inhibited cholesterol synthesis by 40--60% compared with 20--35% by gamma-glutamyl-S-allylcysteine (GSAC), gamma-glutamyl-S-methylcysteine (GSMC) and gamma-glutamyl-S-propylcysteine (GSPC). Lipid-soluble sulfur compounds (i.e., diallyl sulfide, diallyl disulfide, diallyl trisulfide, dipropyl sulfide and dipropyl trisulfide) at low concentrations (0.05--0.5 mol/L) slightly (10--15%) inhibited cholesterol synthesis but became highly cytotoxic at high concentrations (1.0--4.0 mol/L). All water-soluble compounds, except S-allylmercaptocysteine, were not cytotoxic, judging from the release of cellular lactate dehydrogenase into the culture medium. Taken together, the results of our studies indicate that the cholesterol-lowering effects of garlic extract, such as AGE, stem in part from inhibition of hepatic cholesterol synthesis by water-soluble sulfur compounds, especially SAC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.