Abstract
The physiological relationship between brain cholesterol content and the action of amyloid beta (Abeta) peptide in Alzheimer's disease (AD) is a highly controversially discussed topic. Evidences for modulations of the Abeta/membrane interaction induced by plasma membrane cholesterol have already been observed. We have recently reported that Abeta(25-35) is capable of inserting in lipid membranes and perturbing their structure. Applying neutron diffraction and selective deuteration, we now demonstrate that cholesterol alters, at the molecular level, the capability of Abeta(25-35) to penetrate into the lipid bilayers; in particular, a molar weight content of 20% of cholesterol hinders the intercalation of monomeric Abeta(25-35) completely. At very low cholesterol content (about 1% molar weight) the location of the C-terminal part of Abeta(25-35) has been unequivocally established in the hydrocarbon region of the membrane, in agreement with our previous results on pure phospholipids membrane. These results link a structural property to a physiological and functional behavior and point to a therapeutical approach to prevent the AD by modulation of membrane properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.