Abstract

Ascites tumour cells have previously been shown by us to require exogenous cholesterol for growth. To investigate further this phenomenon, we have used, in addition to free cholesterol, cholesterol complexed to digitonine, to elaborate the specificity of this growth-controlling process using a chemically defined medium. Our data show that only free cholesterol stimulates cell growth and macromolecule synthesis in a dose-dependent manner, suggesting that the proper embedding of the sterol into the membrane is a prerequisite for its function. Furthermore, studies have been performed on the influence of cholesterol on the phosphoinositide metabolism of our cells, as phosphoinositides furnish important second messenger molecules in the cascade of signal transduction. We could show that cholesterol stimulates a transient release of inositol trisphosphate and other inositol phosphates by inducing the activation of phospholipase C (PLC). PLC activation by a factor of about 3 with phosphatidylinositol 4-phosphate and phosphatidyl inositol 4,5-bisphosphate as substrates could be measured directly by using a partially purified membrane preparation. This enzyme activity was found to be strongly dependent on free Ca 2+ ions with optimal concentrations of 100 nM for cholesterol- and 50 nM for cholesterol-digitonide-treated cells. Ca 2+ concentration for half-maximum activation, however, was identical under both conditions. Phospholipase C activity could be synergistically increased about 2-fold with 25 μg GTP γS in cholesterol-digitonide-treated cells as well, suggesting that the coupling between phospholipase C and the G-protein was not disturbed by the complex. These data demonstrate a functional role of cholesterol on cell growth, macromolecule synthesis, and phosphoinositide metabolism mediating the release of important second messenger molecules.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call