Abstract
Cholesterol is the most abundant molecule in the plasma membrane of mammals. Its distribution across the two membrane leaflets is critical for understanding how cells work. Cholesterol trans-bilayer motion (flip-flop) is a key process influencing its distribution in membranes. Despite extensive investigations, the rate of cholesterol flip-flop and its dependence on the lateral heterogeneity of membranes remain uncertain. In this work, we used atomistic molecular dynamics simulations to sample spontaneous cholesterol flip-flop events in a DPPC:DOPC:cholesterol mixture with heterogeneous lateral distribution of lipids. In addition to an overall flip-flop rate at the time scale of sub-milliseconds, we identified a significant impact of local environment on flip-flop rate. We discuss the atomistic details of the flip-flop events observed in our simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.