Abstract

Most studies on effects of ethanol on membrane cholesterol have reported on changes in the total or bulk amount of cholesterol. Membrane cholesterol, however, can be described in terms of its kinetics and domains. The kinetics and size of lateral cholesterol exchangeable and nonexchangeable pools were examined in synaptosomes of pair-fed controls and chronic ethanol-treated mice. Effects of sphingomyelin, an exofacial leaflet phospholipid, that has been shown to affect cholesterol pools, were also examined. Radiolabeled small unilamellar vesicles were used to exchange cholesterol with synaptosomes. The total amounts of membrane cholesterol, phospholipid phosphorus, and the ratio of cholesterol to phospholipid did not differ between the pair-fed control and ethanol groups. In control mice, the rate constant (hr-1) and the t1/2 (hr) of cholesterol exchange were 0.065 +/- 0.001 and 10.7 +/- 0.25 (hr), respectively. The rate constant was significantly slower (0.053 +/- 0.001, p < 0.05) and the t1/2 significantly longer (13.33 +/- 0.58, p < 0.05) in synaptosomes of the ethanol group compared with the control group. The size of the exchangeable pool of cholesterol did not differ significantly between the two groups. Sphingomyelinase-induced hydrolysis of sphingomyelin significantly slowed cholesterol exchange with the largest effect in synaptosomes of the control group as compared with the ethanol group (p < 0.05). Hydrolysis of sphingomyelin had significantly (p < 0.05) less of an effect on cholesterol exchange in synaptosomes of the ethanol group. Membrane cholesterol can be described in terms of total content, transbilayer distribution, kinetics, and size of lateral pools.(ABSTRACT TRUNCATED AT 250 WORDS)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.