Abstract
Lipid composition of biological membranes is closely related to the function of the ATP-binding cassette (ABC) transporter P-Glycoprotein (Pgp). Herein, we studied how membrane physico-chemical properties affect Pgp-activity. We effectively modulated the cellular cholesterol content using methyl-β-cyclodextrin (MβCD) and MβCD–cholesterol-inclusion complex. Pgp was not liberated from the plasma membrane during cholesterol modulation and functional inhibition of Pgp was related to varying cholesterol levels in the plasma membrane. Our data indicate that membrane fluidity does not solely account for cholesterol dependent modifications of Pgp-activity. Therefore, we isolated lipid rafts and examined distinct membrane microdomains. Both depletion and cholesterol enrichment induces a disassembly of lipid rafts. In cholesterol-depleted cell membranes a shift in the Pgp localisation to detergent soluble fractions was observed. Enrichment of membrane cholesterol changed lipid raft distribution but not the localisation of Pgp. From our data we conclude that Pgp-transport capacity depends on accurate lipid raft properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.